
bluedot Documentation
Release 2.0.0

Martin O’Hanlon

Nov 01, 2020

Contents

1 Getting Started 1
1.1 Installation . 1
1.2 Pairing . 2
1.3 Code . 2
1.4 Connecting . 2
1.5 Where next . 2

2 Pair a Raspberry Pi and Android phone 3
2.1 Using the Desktop . 3
2.2 Using the Command Line . 3

3 Pair 2 Raspberry Pis 5
3.1 Using the Desktop . 5
3.2 Using the Command Line . 5

4 Recipes 7
4.1 Button . 7
4.2 Joystick . 9
4.3 Appearance . 12
4.4 Layout . 12
4.5 Slider . 20
4.6 Swiping . 21
4.7 Rotating . 22
4.8 Multiple Blue Dot Apps . 23
4.9 Bluetooth . 25
4.10 Testing . 26

5 Blue Dot Android App 29
5.1 Start . 29

6 Blue Dot Python App 31
6.1 Start . 31
6.2 Options . 32

7 Blue Dot API 35
7.1 BlueDot . 35
7.2 BlueDotButton . 39
7.3 BlueDotPosition . 41
7.4 BlueDotInteraction . 42
7.5 BlueDotSwipe . 42
7.6 BlueDotRotation . 43

i

8 Bluetooth Comm API 45
8.1 BluetoothServer . 45
8.2 BluetoothClient . 47
8.3 BluetoothAdapter . 48

9 Mock API 51
9.1 MockBlueDot . 51
9.2 MockBluetoothServer . 52
9.3 MockBluetoothClient . 53

10 Protocol 55
10.1 Bluetooth . 55
10.2 Specification . 55
10.3 Example . 57
10.4 Versions . 58

11 Build 59
11.1 Develop . 59
11.2 Test . 59
11.3 Deploy . 60

12 Change log 61
12.1 Bluedot Python library . 61
12.2 Android app . 64

Python Module Index 67

Index 69

ii

CHAPTER 1

Getting Started

In order to use Blue Dot you will need:

• A Raspberry Pi

– with built-in Bluetooth (such as the Raspberry Pi 3, 4 or Zero W)

– or a USB Bluetooth dongle

• An Android phone or 2nd Raspberry Pi for the remote

• An Internet connection (for the install)

1.1 Installation

These instructions assume your Raspberry Pi is running the latest version of Raspbian1.

1.1.1 Android App

If you’re using an Android phone, the Blue Dot app2 can be installed from the Google Play Store.

1.1.2 Python Library

Open a terminal (click Menu → Accessories → Terminal), then enter:

sudo pip3 install bluedot

To upgrade to the latest version:

sudo pip3 install bluedot --upgrade

1 https://www.raspberrypi.org/downloads/raspbian/
2 http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot

1

https://www.raspberrypi.org/downloads/raspbian/
http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot

bluedot Documentation, Release 2.0.0

1.2 Pairing

In order to use Blue Dot you will need to pair the Raspberry Pi to the remote Android phone (page 3) or 2nd
Raspberry Pi (page 5).

1.3 Code

1. Start up Python 3 (e.g. Menu → Programming → Thonny Python IDE)

2. Create a new program

3. Enter the following code:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_press()
print("You pressed the blue dot!")

4. Save your program as mydot.py

5. Run the program:

Server started ##:##:##:##:##:##
Waiting for connection

Warning: Do not save your program as bluedot.py as Python will try and import your program rather than
the bluedot module and you will get the error ImportError: cannot import name BlueDot.

1.4 Connecting

Start-up the Blue Dot app3 on your Android phone or run the Blue Dot Python App (page 31) on your 2nd
Raspberry Pi:

1. Select your Raspberry Pi from the list

Note: Your python program will need to be running and Waiting for connection before the BlueDot
app will be able to connect to your Raspberry Pi.

2. Press the Blue Dot

1.5 Where next

Check out the Recipes (page 7) and the Blue Dot API (page 35) documentation for more ideas on using Blue Dot.

3 http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot

2 Chapter 1. Getting Started

http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot

CHAPTER 2

Pair a Raspberry Pi and Android phone

2.1 Using the Desktop

On your Android phone:

1. Open Settings

2. Select Bluetooth and make your phone “discoverable”

On your Raspberry Pi:

1. Click Bluetooth → Turn On Bluetooth (if it’s off)

2. Click Bluetooth → Make Discoverable

3. Click Bluetooth → Add Device

4. Your phone will appear in the list, select it and click Pair

On your Android phone and Raspberry Pi.

1. Confirm the pairing code matches

2. Click OK

Note: You may receive errors relating to services not being able available or being unable to connect: these can
be ignored, your phone and Raspberry Pi are now paired.

2.2 Using the Command Line

On your Android phone:

1. Open Settings

2. Select Bluetooth and make your phone “discoverable”

On your Raspberry Pi:

1. Type bluetoothctl and press Enter to open Bluetooth control

2. At the [bluetooth]# prompt enter the following commands:

3

bluedot Documentation, Release 2.0.0

discoverable on
pairable on
agent on
default-agent
scan on

3. Wait for a message to appear showing the Android phone has been found:

[NEW] Device 12:23:34:45:56:67 devicename

4. Type pair with the mac address of your Android phone:

pair 12:23:34:45:56:67

On your Android phone and Raspberry Pi.

1. Confirm the passcode.

2. Type quit and press Enter to return to the command line

4 Chapter 2. Pair a Raspberry Pi and Android phone

CHAPTER 3

Pair 2 Raspberry Pis

The instructions below describe pairing a couple of Raspberry Pis which either have built-in Bluetooth (the Pi 3B
or the Pi Zero W) or a USB Bluetooth dongle.

3.1 Using the Desktop

On the first Raspberry Pi:

1. Click Bluetooth → Turn On Bluetooth (if it’s off)

2. Click Bluetooth → Make Discoverable

On the second Raspberry Pi:

1. Click Bluetooth → Turn On Bluetooth (if it’s off)

2. Click Bluetooth → Make Discoverable

3. Click Bluetooth → Add Device

4. The first Pi will appear in the list: select it and click the Pair button

On the first Raspberry Pi again:

1. Accept the pairing request

Note: You may receive errors relating to services not being able available or being unable to connect: these can
be ignored.

3.2 Using the Command Line

On the first Raspberry Pi:

1. Enter bluetoothctl to open Bluetooth control

2. At the [bluetooth]# prompt enter the following commands:

5

bluedot Documentation, Release 2.0.0

discoverable on
pairable on
agent on
default-agent

On the second Raspberry Pi:

1. Enter bluetoothctl to open Bluetooth control

2. At the [bluetooth]# prompt enter the following commands:

discoverable on
pairable on
agent on
default-agent
scan on

3. Wait for a message to appear showing the first Pi has been found:

[NEW] Device 12:23:34:45:56:67 devicename

4. Type pair with the mac address of the first Pi:

pair 12:23:34:45:56:67

On both Raspberry Pi’s:

1. Confirm the passcode.

2. Type quit and press Enter to return to the command line

6 Chapter 3. Pair 2 Raspberry Pis

CHAPTER 4

Recipes

The recipes provide examples of how you can use Blue Dot. Don’t be restricted by these ideas and be sure to have
a look at the Blue Dot API (page 35) as there is more to be discovered.

4.1 Button

The simplest way to use the Blue Dot is as a wireless button.

4.1.1 Hello World

Let’s say “Hello World” by creating the BlueDot (page 35) object then waiting for the Blue Dot app to connect
and the button be pressed:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_press()
print("Hello World")

Alternatively you can also use when_pressed to call a function:

from bluedot import BlueDot
from signal import pause

def say_hello():
print("Hello World")

bd = BlueDot()
bd.when_pressed = say_hello

pause()

wait_for_release and when_released also allow you to interact when the button is released:

from bluedot import BlueDot
from signal import pause

(continues on next page)

7

bluedot Documentation, Release 2.0.0

(continued from previous page)

def say_hello():
print("Hello World")

def say_goodbye():
print("goodbye")

bd = BlueDot()
bd.when_pressed = say_hello
bd.when_released = say_goodbye

pause()

Double presses can also be used with wait_for_double_press and when_double_pressed:

from bluedot import BlueDot
from signal import pause

def shout_hello():
print("HELLO")

bd = BlueDot()
bd.when_double_pressed = shout_hello

pause()

4.1.2 Flash an LED

Using Blue Dot in combination with gpiozero4 you can interact with electronic components, such as LEDs,
connected to your Raspberry Pi.

When a button is pressed, the LED connected to GPIO 27 will turn on; when released it will turn off:

import os
from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot()
led = LED(27)

bd.wait_for_press()
led.on()

bd.wait_for_release()
led.off()

You could also use when_pressed and when_released:

from bluedot import BlueDot
from gpiozero import LED
from signal import pause

bd = BlueDot()
led = LED(27)

bd.when_pressed = led.on
bd.when_released = led.off

pause()

4 https://gpiozero.readthedocs.io/en/latest/recipes.html#module-gpiozero

8 Chapter 4. Recipes

https://gpiozero.readthedocs.io/en/latest/recipes.html#module-gpiozero

bluedot Documentation, Release 2.0.0

Alternatively use source5 and values:

from bluedot import BlueDot
from gpiozero import LED
from signal import pause

bd = BlueDot()
led = LED(27)

led.source = bd.values

pause()

4.1.3 Remote Camera

Using a Raspberry Pi camera module, picamera.PiCamera and BlueDot (page 35), you can really easily
create a remote camera:

from bluedot import BlueDot
from picamera import PiCamera
from signal import pause

bd = BlueDot()
cam = PiCamera()

def take_picture():
cam.capture("pic.jpg")

bd.when_pressed = take_picture

pause()

4.2 Joystick

The Blue Dot can also be used as a joystick when the middle, top, bottom, left or right areas of the dot are touched.

4.2.1 D-pad

Using the position the Blue Dot was pressed you can work out whether it was pressed to go up, down, left, right
like the D-pad6 on a joystick:

from bluedot import BlueDot
from signal import pause

def dpad(pos):
if pos.top:

print("up")
elif pos.bottom:

print("down")
elif pos.left:

print("left")
elif pos.right:

print("right")
elif pos.middle:

(continues on next page)

5 https://gpiozero.readthedocs.io/en/latest/api_generic.html#gpiozero.SourceMixin.source
6 https://en.wikipedia.org/wiki/D-pad

4.2. Joystick 9

https://gpiozero.readthedocs.io/en/latest/api_generic.html#gpiozero.SourceMixin.source
https://en.wikipedia.org/wiki/D-pad

bluedot Documentation, Release 2.0.0

(continued from previous page)

print("fire")

bd = BlueDot()
bd.when_pressed = dpad

pause()

At the moment the D-pad7 only registers when it is pressed. To get it work when the position is moved you should
add the following line above pause():

bd.when_moved = dpad

4.2.2 Robot

These recipes assume your robot is constructed with a pair of H-bridges. The forward and backward pins for the
H-bridge of the left wheel are 17 and 18 respectively, and the forward and backward pins for H-bridge of the right
wheel are 22 and 23 respectively.

Using the Blue Dot and gpiozero.Robot8, you can create a bluetooth controlled robot9 which moves when
the dot is pressed and stops when it is released:

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(17, 18), right=(22, 23))

def move(pos):
if pos.top:

robot.forward()
elif pos.bottom:

robot.backward()
elif pos.left:

robot.left()
elif pos.right:

robot.right()

def stop():
robot.stop()

bd.when_pressed = move
bd.when_moved = move
bd.when_released = stop

pause()

4.2.3 Variable Speed Robot

You can change the robot to use variable speeds, so the further towards the edge you press the Blue Dot, the faster
the robot will go.

The distance (page 41) attribute returns how far from the centre the Blue Dot was pressed, which can be passed
to the robot’s functions to change its speed:

7 https://en.wikipedia.org/wiki/D-pad
8 https://gpiozero.readthedocs.io/en/latest/api_boards.html#gpiozero.Robot
9 https://youtu.be/eW9oEPySF58

10 Chapter 4. Recipes

https://en.wikipedia.org/wiki/D-pad
https://gpiozero.readthedocs.io/en/latest/api_boards.html#gpiozero.Robot
https://youtu.be/eW9oEPySF58

bluedot Documentation, Release 2.0.0

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(lfpin, lbpin), right=(rfpin, rbpin))

def move(pos):
if pos.top:

robot.forward(pos.distance)
elif pos.bottom:

robot.backward(pos.distance)
elif pos.left:

robot.left(pos.distance)
elif pos.right:

robot.right(pos.distance)

def stop():
robot.stop()

bd.when_pressed = move
bd.when_moved = move
bd.when_released = stop

pause()

Alternatively you can use a generator and yield (x, y) values to the gpiozero.Robot.source property (cour-
tesy of Ben Nuttall10):

from gpiozero import Robot
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, y):
left = y if x > 0 else y + x
right = y if x < 0 else y - x
return (clamped(left), clamped(right))

def clamped(v):
return max(-1, min(1, v))

def drive():
while True:

if bd.is_pressed:
x, y = bd.position.x, bd.position.y
yield pos_to_values(x, y)

else:
yield (0, 0)

robot = Robot(left=(lfpin, lbpin), right=(rfpin, rbpin))
bd = BlueDot()

robot.source = drive()

pause()

10 https://github.com/bennuttall

4.2. Joystick 11

https://github.com/bennuttall

bluedot Documentation, Release 2.0.0

4.3 Appearance

The button doesn’t have to be blue or a dot, you can change how it looks, or make it completely invisible.

4.3.1 Colo(u)r

To change the color of the button use the color (page 37): property:

from bluedot import BlueDot
bd = BlueDot()
bd.color = "red"

A dictionary of available colors can be obtained from bluedot.COLORS.

The color can also be set using a hex value of #rrggbb or #rrggbbaa value:

bd.color = "#00ff00"

Or a tuple of 3 or 4 integers between 0 and 255 either (red, gree, blue) or (red, green, blue, alpha):

bd.color = (0, 255, 0)

4.3.2 Square

The button can also be made square using the square (page 38): property:

from bluedot import BlueDot
bd = BlueDot()
bd.square = True

4.3.3 Border

A border can also been added to the button by setting the border (page 37): property to True:

from bluedot import BlueDot
bd = BlueDot()
bd.border = True

4.3.4 (In)visible

The button can be hidden and shown using the visible (page 38): property:

from bluedot import BlueDot
bd = BlueDot()
bd.visible = False

4.4 Layout

You can have as many buttons as you want.

The Buttons need to be in a grid of columns and rows.

12 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

By hiding specific buttons and being creative with the button’s appearance you can create very sophisticated
layouts for your controllers using Blue Dot.

4.4. Layout 13

bluedot Documentation, Release 2.0.0

The Blue Dot android app supports multi touch allowing you to use multiple buttons simultaneously

Note: Currently only the Android client app supports multi buttons.

4.4.1 Two Buttons

Create 2 buttons side by side, by setting the number of cols to 2:

from bluedot import BlueDot
from signal import pause

def pressed(pos):
print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=2)
bd.when_pressed = pressed

(continues on next page)

14 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

(continued from previous page)

pause()

The buttons could be made verticle by setting the rows attribute:

bd = BlueDot(rows=2)

Each button can be set to call its own function by using the grid position:

from bluedot import BlueDot
from signal import pause

def pressed_1(pos):
print("button 1 pressed")

def pressed_2(pos):
print("button 2 pressed")

bd = BlueDot(cols=2, rows=1)

bd[0,0].when_pressed = pressed_1
bd[1,0].when_pressed = pressed_2

pause()

To create a gap in between the buttons you could create a row of 3 buttons and hide the middle button:

from bluedot import BlueDot
from signal import pause

def pressed(pos):
print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=3, rows=1)
bd[1,0].visible = False
bd.when_pressed = pressed

pause()

4.4. Layout 15

bluedot Documentation, Release 2.0.0

4.4.2 Many Buttons

Create a grid of buttons by setting the cols and rows e.g. 10 buttons in a 2x5 grid:

from bluedot import BlueDot
from signal import pause

def pressed(pos):
print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=2, rows=5)
bd.when_pressed = pressed

pause()

You could assign all the buttons random colors:

16 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

from bluedot import BlueDot, COLORS
from random import choice
from signal import pause

def pressed(pos):
print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=2, rows=5)
bd.when_pressed = pressed

for button in bd.buttons:
button.color = choice(list(COLORS.values()))

pause()

4.4.3 D-pad

Create a traditional d-pad layout by using a 3x3 grid and hide the buttons at the corners and in the middle:

4.4. Layout 17

bluedot Documentation, Release 2.0.0

from bluedot import BlueDot
from signal import pause

def up():
print("up")

def down():
print("down")

def left():
print("left")

def right():
print("right")

(continues on next page)

18 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

(continued from previous page)

bd = BlueDot(cols=3, rows=3)
bd.color = "gray"
bd.square = True

bd[0,0].visible = False
bd[2,0].visible = False
bd[0,2].visible = False
bd[2,2].visible = False
bd[1,1].visible = False

bd[1,0].when_pressed = up
bd[1,2].when_pressed = down
bd[0,1].when_pressed = left
bd[2,1].when_pressed = right

pause()

Add 2 buttons on the right to create a joypad:

from bluedot import BlueDot
from signal import pause

def up():
print("up")

def down():
print("down")

def left():
print("left")

def right():
print("right")

bd = BlueDot(cols=3, rows=3)
bd.color = "gray"
bd.square = True

bd[0,0].visible = False
bd[2,0].visible = False

(continues on next page)

4.4. Layout 19

bluedot Documentation, Release 2.0.0

(continued from previous page)

bd[0,2].visible = False
bd[2,2].visible = False
bd[1,1].visible = False

bd[1,0].when_pressed = up
bd[1,2].when_pressed = down
bd[0,1].when_pressed = left
bd[2,1].when_pressed = right

pause()

4.5 Slider

By holding down a button and moving the position you can use it as an analogue slider.

4.5.1 Centre Out

Using the BlueDotPosition.distance (page 41) property which is returned when the position is moved
you can create a slider which goes from the centre out in any direction:

from bluedot import BlueDot
from signal import pause

def show_percentage(pos):
percentage = round(pos.distance * 100, 2)
print("{}%".format(percentage))

bd = BlueDot()
bd.when_moved = show_percentage

pause()

4.5.2 Left to Right

The BlueDotPosition.x (page 41) property returns a value from -1 (far left) to 1 (far right). Using this value
you can create a slider which goes horizontally through the middle:

from bluedot import BlueDot
from signal import pause

def show_percentage(pos):
horizontal = ((pos.x + 1) / 2)
percentage = round(horizontal * 100, 2)
print("{}%".format(percentage))

bd = BlueDot()
bd.when_moved = show_percentage

pause()

To make a vertical slider you could change the code above to use BlueDotPosition.y (page 41) instead.

20 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

4.5.3 Dimmer Switch

Using the gpiozero.PWMLED11 class and BlueDot (page 35) as a vertical slider you can create a wireless
dimmer switch:

from bluedot import BlueDot
from gpiozero import PWMLED
from signal import pause

def set_brightness(pos):
brightness = (pos.y + 1) / 2
led.value = brightness

led = PWMLED(27)
bd = BlueDot()
bd.when_moved = set_brightness

pause()

4.6 Swiping

You can interact with the Blue Dot by swiping across it, like you would to move between pages in a mobile app.

4.6.1 Single

Detecting a single swipe is easy using wait_for_swipe:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_swipe()
print("Blue Dot swiped")

Alternatively you can also use when_swiped to call a function:

from bluedot import BlueDot
from signal import pause

def swiped():
print("Blue Dot swiped")

bd = BlueDot()
bd.when_swiped = swiped

pause()

4.6.2 Direction

You can tell what direction the Blue Dot is swiped by using the BlueDotSwipe (page 42) object passed to the
function assigned to when_swiped:

from bluedot import BlueDot
from signal import pause

def swiped(swipe):
if swipe.up:

(continues on next page)

11 https://gpiozero.readthedocs.io/en/latest/api_output.html#gpiozero.PWMLED

4.6. Swiping 21

https://gpiozero.readthedocs.io/en/latest/api_output.html#gpiozero.PWMLED

bluedot Documentation, Release 2.0.0

(continued from previous page)

print("up")
elif swipe.down:

print("down")
elif swipe.left:

print("left")
elif swipe.right:

print("right")

bd = BlueDot()
bd.when_swiped = swiped

pause()

4.6.3 Speed, Angle, and Distance

BlueDotSwipe (page 42) returns more than just the direction. It also includes the speed of the swipe (in Blue
Dot radius per second), the angle, and the distance between the start and end positions of the swipe:

from bluedot import BlueDot
from signal import pause

def swiped(swipe):
print("Swiped")
print("speed={}".format(swipe.speed))
print("angle={}".format(swipe.angle))
print("distance={}".format(swipe.distance))

bd = BlueDot()
bd.when_swiped = swiped

pause()

4.7 Rotating

You can use Blue Dot like a rotary encoder or “iPod classic click wheel” - rotating around the outer edge of the
Blue Dot will cause it to “tick”. The Blue Dot is split into a number of virtual segments (the default is 8), when
the position moves from one segment to another, it ticks.

4.7.1 Counter

Using the when_rotated callback you can create a counter which increments / decrements when the Blue Dot
is rotated either clockwise or anti-clockwise. A BlueDotRotation (page 43) object is passed to the callback.
Its value (page 43) property will be -1 if rotated anti-clockwise and 1 if rotated clockwise:

from bluedot import BlueDot
from signal import pause

count = 0

def rotated(rotation):
global count
count += rotation.value

print("{} {} {}".format(count,
rotation.clockwise,

(continues on next page)

22 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

(continued from previous page)

rotation.anti_clockwise))

bd = BlueDot()
bd.when_rotated = rotated

pause()

The rotation speed can be modified using the BlueDot.rotation_segments (page 38) property which
changes the number of segments the Blue Dot is split into:

bd.rotation_segments = 16

4.8 Multiple Blue Dot Apps

You can connect multiple Blue Dot clients (apps) to a single server (python program) by using different Bluetooth
ports for each app.

Create multiple BlueDot servers using specific ports:

from bluedot import BlueDot
from signal import pause

def bd1_pressed():
print("BlueDot 1 pressed")

def bd2_pressed():
print("BlueDot 2 pressed")

bd1 = BlueDot(port = 1)
bd2 = BlueDot(port = 2)

bd1.when_pressed = bd1_pressed
bd2.when_pressed = bd2_pressed

pause()

Change the BlueDot app to use the specific port by:

1. Opening settings from the menu

2. Turning Auto port discovery off

3. Selecting the specific Bluetooth port

4.8. Multiple Blue Dot Apps 23

bluedot Documentation, Release 2.0.0

24 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

4.9 Bluetooth

You can interact with the Bluetooth adapter using BlueDot (page 35).

4.9.1 Pairing

You can put your Raspberry Pi into pairing mode which will allow pairing from other devices for 60 seconds:

from bluedot import BlueDot
from signal import pause

bd = BlueDot()
bd.allow_pairing()

pause()

Or connect up a physical button up to start the pairing (the button is assumed to be wired to GPIO 27):

from bluedot import BlueDot
from gpiozero import Button
from signal import pause

bd = BlueDot()
button = Button(27)

button.when_pressed = bd.allow_pairing

pause()

4.9. Bluetooth 25

bluedot Documentation, Release 2.0.0

4.9.2 Paired Devices

You can iterate over the devices that your Raspberry Pi is paired too:

from bluedot import BlueDot
bd = BlueDot()

devices = bd.paired_devices
for d in devices:

device_address = d[0]
device_name = d[1]

4.10 Testing

Blue Dot includes a MockBlueDot class to allow you to test and debug your program without having to use
Bluetooth or a Blue Dot client.

MockBlueDot inherits from BlueDot (page 35) and is used in the same way, but you have the option of
launching a mock app which you can click with a mouse or writing scripts to simulate the Blue Dot being used.

4.10.1 Mock App

Launch the mock Blue Dot app to test by clicking the on-screen dot with the mouse:

from bluedot import MockBlueDot
from signal import pause

def say_hello():
print("Hello World")

bd = MockBlueDot()
bd.when_pressed = say_hello

(continues on next page)

26 Chapter 4. Recipes

bluedot Documentation, Release 2.0.0

(continued from previous page)

bd.launch_mock_app()
pause()

4.10.2 Scripted Tests

Tests can also be scripted using MockBlueDot:

from bluedot import MockBlueDot

def say_hello():
print("Hello World")

bd = MockBlueDot()
bd.when_pressed = say_hello

bd.mock_client_connected()
bd.mock_blue_dot_pressed(0,0)

4.10. Testing 27

bluedot Documentation, Release 2.0.0

28 Chapter 4. Recipes

CHAPTER 5

Blue Dot Android App

The Blue Dot app12 is available to download from the Google Play store.

Please leave a rating and review if you find Blue Dot useful :)

5.1 Start

1. Download the Blue Dot app13 from the Google Play store.

2. If you havent already done so, pair your raspberry pi as described in the Getting Started (page 1) guide.

3. Run the Blue Dot app

12 http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot
13 http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot

29

http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot
http://play.google.com/store/apps/details?id=com.stuffaboutcode.bluedot

bluedot Documentation, Release 2.0.0

4. Select your Raspberry Pi from the paired devices list

5. Press the Dot

30 Chapter 5. Blue Dot Android App

CHAPTER 6

Blue Dot Python App

Blue Dot Python app allows you to use another Raspberry Pi (or linux based computer) as the Blue Dot remote.

6.1 Start

The app is included in the bluedot Python library:

1. If you havent already done so, pair your raspberry pi and install the Python library as described in the
Getting Started (page 1) guide

2. Run the Blue Dot app:

bluedotapp

3. Select your Raspberry Pi from the paired devices list

31

bluedot Documentation, Release 2.0.0

4. Press the Dot

6.2 Options

To get help with the Blue Dot app options:

bluedotapp --help

If you have more than 1 bluetooth device you can use --device to use a particular device:

bluedotapp --device hci1

You can specify the server to connect to at startup by using the --server option:

bluedotapp --server myraspberrypi

The screen size of the Blue Dot app can be changed using the width and height options and specifying the
number of pixels:

bluedotapp --width 500 --height 500

The app can also be used full screen, if no width or height is given the screen will be sized to the current
resolution of the screen:

32 Chapter 6. Blue Dot Python App

bluedot Documentation, Release 2.0.0

bluedotapp --fullscreen

6.2. Options 33

bluedot Documentation, Release 2.0.0

34 Chapter 6. Blue Dot Python App

CHAPTER 7

Blue Dot API

7.1 BlueDot

class bluedot.BlueDot(device=’hci0’, port=1, auto_start_server=True, power_up_device=False,
print_messages=True, cols=1, rows=1)

Interacts with a Blue Dot client application, communicating when and where a button has been pressed,
released or held.

This class starts an instance of btcomm.BluetoothServer (page 45) which manages the connection
with the Blue Dot client.

This class is intended for use with a Blue Dot client application.

The following example will print a message when the Blue Dot button is pressed:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_press()
print("The button was pressed")

Multiple buttons can be created, by changing the number of columns and rows. Each button can be refer-
enced using its [col, row]:

bd = BlueDot(cols=2, rows=2)
bd[0,0].wait_for_press()
print("Top left button pressed")
bd[1,1].wait_for_press()
print("Bottom right button pressed")

Parameters

• device (str14) – The Bluetooth device the server should use, the default is “hci0”, if
your device only has 1 Bluetooth adapter this shouldn’t need to be changed.

• port (int15) – The Bluetooth port the server should use, the default is 1, and under
normal use this should never need to change.

14 https://docs.python.org/3.5/library/stdtypes.html#str
15 https://docs.python.org/3.5/library/functions.html#int

35

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int

bluedot Documentation, Release 2.0.0

• auto_start_server (bool16) – If True (the default), the Bluetooth server will
be automatically started on initialisation; if False, the method start() (page 37)
will need to be called before connections will be accepted.

• power_up_device (bool17) – If True, the Bluetooth device will be powered up
(if required) when the server starts. The default is False.

Depending on how Bluetooth has been powered down, you may need to use rfkill
to unblock Bluetooth to give permission to bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

• print_messages (bool18) – If True (the default), server status messages will be
printed stating when the server has started and when clients connect / disconnect.

• cols (int19) – The number of columns in the grid of buttons. Defaults to 1.

• rows (int20) – The number of rows in the grid of buttons. Defaults to 1.

allow_pairing(timeout=60)
Allow a Bluetooth device to pair with your Raspberry Pi by putting the adapter into discoverable and
pairable mode.

Parameters timeout (int21) – The time in seconds the adapter will remain pairable. If
set to None the device will be discoverable and pairable indefinetly.

resize(cols, rows)
Resizes the grid of buttons.

Parameters

• cols (int22) – The number of columns in the grid of buttons.

• rows (int23) – The number of rows in the grid of buttons.

Note: Existing buttons will retain their state (color, border, etc) when resized. New buttons will be
created with the default values set by the BlueDot (page 35).

set_when_client_connects(callback, background=False)
Sets the function which is called when a Blue Dot connects.

Parameters

• callback (Callable) – The function to call, setting to None will stop the call-
back.

• background (bool24) – If set to True the function will be run in a separate thread
and it will return immediately. The default is False.

set_when_client_disconnects(callback, background=False)
Sets the function which is called when a Blue Dot disconnects.

Parameters

• callback (Callable) – The function to call, setting to None will stop the call-
back.

16 https://docs.python.org/3.5/library/functions.html#bool
17 https://docs.python.org/3.5/library/functions.html#bool
18 https://docs.python.org/3.5/library/functions.html#bool
19 https://docs.python.org/3.5/library/functions.html#int
20 https://docs.python.org/3.5/library/functions.html#int
21 https://docs.python.org/3.5/library/functions.html#int
22 https://docs.python.org/3.5/library/functions.html#int
23 https://docs.python.org/3.5/library/functions.html#int
24 https://docs.python.org/3.5/library/functions.html#bool

36 Chapter 7. Blue Dot API

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

bluedot Documentation, Release 2.0.0

• background (bool25) – If set to True the function will be run in a separate thread
and it will return immediately. The default is False.

start()
Start the btcomm.BluetoothServer (page 45) if it is not already running. By default the server
is started at initialisation.

stop()
Stop the Bluetooth server.

wait_for_connection(timeout=None)
Waits until a Blue Dot client connects. Returns True if a client connects.

Parameters timeout (float26) – Number of seconds to wait for a wait connections, if
None (the default), it will wait indefinetly for a connection from a Blue Dot client.

adapter
The btcomm.BluetoothAdapter (page 48) instance that is being used.

border
When set to True adds a border to the dot. Default is False.

Note: If there are multiple buttons in the grid, the ‘default’ value will be returned and when set all
buttons will be updated.

buttons
A list of BlueDotButton (page 39) objects in the “grid”.

color
Sets or returns the color of the button. Defaults to BLUE.

An instance of colors.Color is returned.

Value can be set as a colors.Color object, a hex color value in the format #rrggbb or #rrggbbaa,
a tuple of (red, green, blue) or (red, green, blue, alpha) values between 0 & 255 or a text description
of the color, e.g. “red”.

A dictionary of available colors can be obtained from bluedot.COLORS.

Note: If there are multiple buttons in the grid, the ‘default’ value will be returned and when set all
buttons will be updated.

cols
Sets or returns the number of columns in the grid of buttons.

device
The Bluetooth device the server is using. This defaults to “hci0”.

double_press_time
Sets or returns the time threshold in seconds for a double press. Defaults to 0.3.

Note: If there are multiple buttons in the grid, the ‘default’ value will be returned and when set all
buttons will be updated.

interaction
Returns an instance of BlueDotInteraction (page 42) representing the current or last interaction
with the Blue Dot.

25 https://docs.python.org/3.5/library/functions.html#bool
26 https://docs.python.org/3.5/library/functions.html#float

7.1. BlueDot 37

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float

bluedot Documentation, Release 2.0.0

Note: If the Blue Dot is released (and inactive), interaction (page 37) will return the interaction
when it was released, until it is pressed again. If the Blue Dot has never been pressed interaction
(page 37) will return None.

If there are multiple buttons, the interaction will only be returned for button [0,0]

Deprecated since version 2.0.0.

is_connected
Returns True if a Blue Dot client is connected.

is_pressed
Returns True if the button is pressed (or held).

Note: If there are multiple buttons, if any button is pressed, True will be returned.

paired_devices
Returns a sequence of devices paired with this adapter [(mac_address, name),
(mac_address, name), ...]:

bd = BlueDot()
devices = bd.paired_devices
for d in devices:

device_address = d[0]
device_name = d[1]

port
The port the server is using. This defaults to 1.

print_messages
When set to True messages relating to the status of the Bluetooth server will be printed.

rotation_segments
Sets or returns the number of virtual segments the button is split into for rotating. Defaults to 8.

Note: If there are multiple buttons in the grid, the ‘default’ value will be returned and when set all
buttons will be updated.

rows
Sets or returns the number of rows in the grid of buttons.

running
Returns a True if the server is running.

server
The btcomm.BluetoothServer (page 45) instance that is being used to communicate with
clients.

square
When set to True the ‘dot’ is made square. Default is False.

Note: If there are multiple buttons in the grid, the ‘default’ value will be returned and when set all
buttons will be updated.

visible
When set to False the dot will be hidden. Default is True.

Note: Events (press, release, moved) are still sent from the dot when it is not visible.

38 Chapter 7. Blue Dot API

bluedot Documentation, Release 2.0.0

If there are multiple buttons in the grid, the ‘default’ value will be returned and when set all buttons
will be updated.

when_client_connects
Sets or returns the function which is called when a Blue Dot application connects.

The function will be run in the same thread and block, to run in a separate thread use
set_when_client_connects(function, background=True)

when_client_disconnects
Sets or returns the function which is called when a Blue Dot disconnects.

The function will be run in the same thread and block, to run in a separate thread use
set_when_client_disconnects(function, background=True)

7.2 BlueDotButton

class bluedot.BlueDotButton(bd, col, row, color, square, border, visible)
Represents a single button on the button client applications. It keeps tracks of when and where the button
has been pressed and processes any events.

This class is intended for use via BlueDot (page 35) and should not be instantiated “manually”.

A button can be interacted with individually via BlueDot (page 35) by stating its position in the grid e.g.

from bluedot import BlueDot
bd = BlueDot()

first_button = bd[0,0].wait_for_press

first_button.wait_for_press()
print("The first button was pressed")

Parameters

• bd (BlueDot (page 35)) – The BlueDot object this button belongs too.

• col (int27) – The column position for this button in the grid.

• col – The row position for this button in the grid.

:param string color The color of the button.

Can be set as a colors.Color object, a hex color value in the format #rrggbb or #rrggbbaa, a tuple
of (red, green, blue) or (red, green, blue, alpha) values between 0 & 255 or a text description of the
color, e.g. “red”.

A dictionary of available colors can be obtained from bluedot.COLORS.

Parameters

• square (bool28) – When set to True the button is made square.

• border (bool29) – When set to True adds a border to the button.

• visible (bool30) – When set to False the button will be hidden.

27 https://docs.python.org/3.5/library/functions.html#int
28 https://docs.python.org/3.5/library/functions.html#bool
29 https://docs.python.org/3.5/library/functions.html#bool
30 https://docs.python.org/3.5/library/functions.html#bool

7.2. BlueDotButton 39

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool

bluedot Documentation, Release 2.0.0

get_rotation()
Returns an instance of BlueDotRotation (page 43) if the last interaction with the button was a
rotation. Returns None if the button was not rotated.

get_swipe()
Returns an instance of BlueDotSwipe (page 42) if the last interaction with the button was a swipe.
Returns None if the button was not swiped.

is_double_press(position)
Returns True if the position passed represents a double press.

i.e. The last interaction was the button was to release it, and the time to press is less than the dou-
ble_press_time.

Parameters position (BlueDotPosition (page 41)) – The BlueDotPosition where
the Dot was pressed.

move(position)
Processes any “released” events associated with this button.

Parameters position (BlueDotPosition (page 41)) – The BlueDotPosition where
the Dot was pressed.

press(position)
Processes any “pressed” events associated with this button.

Parameters position (BlueDotPosition (page 41)) – The BlueDotPosition where
the dot was pressed.

release(position)
Processes any “released” events associated with this button.

Parameters position (BlueDotPosition (page 41)) – The BlueDotPosition where
the Dot was pressed.

border
When set to True adds a border to the dot. Default is False.

color
Sets or returns the color of the dot. Defaults to BLUE.

An instance of colors.Color is returned.

Value can be set as a colors.Color object, a hex color value in the format #rrggbb or #rrggbbaa,
a tuple of (red, green, blue) or (red, green, blue, alpha) values between 0 & 255 or a text description
of the color, e.g. “red”.

A dictionary of available colors can be obtained from bluedot.COLORS.

interaction
Returns an instance of BlueDotInteraction (page 42) representing the current or last interaction
with the button.

Note: If the button is released (and inactive), interaction (page 40) will return the interaction
when it was released, until it is pressed again. If the button has never been pressed interaction
(page 40) will return None.

modified
Returns True if the button’s appearance has been modified [is different] from the default.

square
When set to True the ‘dot’ is made square. Default is False.

visible
When set to False the dot will be hidden. Default is True.

40 Chapter 7. Blue Dot API

bluedot Documentation, Release 2.0.0

Note: Events (press, release, moved) are still sent from the dot when it is not visible.

7.3 BlueDotPosition

class bluedot.BlueDotPosition(col, row, x, y)
Represents a position of where the blue dot is pressed, released or held.

Parameters

• x (float31) – The x position of the Blue Dot, 0 being centre, -1 being far left and 1
being far right.

• y (float32) – The y position of the Blue Dot, 0 being centre, -1 being at the bottom
and 1 being at the top.

angle
The angle from centre of where the Blue Dot is pressed, held or released. 0 degrees is up, 0..180
degrees clockwise, -180..0 degrees anti-clockwise.

bottom
Returns True if the Blue Dot is pressed, held or released at the bottom.

col
The column.

distance
The distance from centre of where the Blue Dot is pressed, held or released. The radius of the Blue
Dot is 1.

left
Returns True if the Blue Dot is pressed, held or released on the left.

middle
Returns True if the Blue Dot is pressed, held or released in the middle.

right
Returns True if the Blue Dot is pressed, held or released on the right.

row
The row.

time
The time the blue dot was at this position.

Note: This is the time the message was received from the Blue Dot app, not the time it was sent.

top
Returns True if the Blue Dot is pressed, held or released at the top.

x
The x position of the Blue Dot, 0 being centre, -1 being far left and 1 being far right.

y
The y position of the Blue Dot, 0 being centre, -1 being at the bottom and 1 being at the top.

31 https://docs.python.org/3.5/library/functions.html#float
32 https://docs.python.org/3.5/library/functions.html#float

7.3. BlueDotPosition 41

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

bluedot Documentation, Release 2.0.0

7.4 BlueDotInteraction

class bluedot.BlueDotInteraction(pressed_position)
Represents an interaction with the Blue Dot, from when it was pressed to when it was released.

A BlueDotInteraction (page 42) can be active or inactive, i.e. it is active because the Blue Dot has
not been released, or inactive because the Blue Dot was released and the interaction finished.

Parameters pressed_position (BlueDotPosition (page 41)) – The BlueDotPosition
when the Blue Dot was pressed.

moved(moved_position)
Adds an additional position to the interaction, called when the position the Blue Dot is pressed moves.

released(released_position)
Called when the Blue Dot is released and completes a Blue Dot interaction

Parameters released_position (BlueDotPosition (page 41)) – The BlueDot-
Position when the Blue Dot was released.

active
Returns True if the interaction is still active, i.e. the Blue Dot hasnt been released.

current_position
Returns the current position for the interaction.

If the interaction is inactive, it will return the position when the Blue Dot was released.

distance
Returns the total distance of the Blue Dot interaction

duration
Returns the duration in seconds of the interaction, i.e. the amount time between when the Blue Dot
was pressed and now or when it was released.

positions
A sequence of BlueDotPosition (page 41) instances for all the positions which make up this
interaction.

The first position is where the Blue Dot was pressed, the last is where the Blue Dot was released, all
position in between are where the position Blue Dot changed (i.e. moved) when it was held down.

pressed_position
Returns the position when the Blue Dot was pressed i.e. where the interaction started.

previous_position
Returns the previous position for the interaction.

If the interaction contains only 1 position, None will be returned.

released_position
Returns the position when the Blue Dot was released i.e. where the interaction ended.

If the interaction is still active it returns None.

7.5 BlueDotSwipe

class bluedot.BlueDotSwipe(interaction)
Represents a Blue Dot swipe interaction.

A BlueDotSwipe (page 42) can be valid or invalid based on whether the Blue Dot interaction was a swipe
or not.

Parameters interaction (BlueDotInteraction (page 42)) – The BlueDotInteraction
object to be used to determine whether the interaction was a swipe.

42 Chapter 7. Blue Dot API

bluedot Documentation, Release 2.0.0

angle
Returns the angle of the swipe (i.e. the angle between the pressed and released positions)

col
The column.

direction
Returns the direction (“up”, “down”, “left”, “right”) of the swipe. If the swipe is not valid None is
returned.

distance
Returns the distance of the swipe (i.e. the distance between the pressed and released positions)

down
Returns True if the Blue Dot was swiped down.

interaction
The BlueDotInteraction (page 42) object relating to this swipe.

left
Returns True if the Blue Dot was swiped left.

right
Returns True if the Blue Dot was swiped right.

row
The row.

speed
Returns the speed of the swipe in Blue Dot radius / second.

up
Returns True if the Blue Dot was swiped up.

valid
Returns True if the Blue Dot interaction is a swipe.

7.6 BlueDotRotation

class bluedot.BlueDotRotation(interaction, no_of_segments)

anti_clockwise
Returns True if the Blue Dot was rotated anti-clockwise.

clockwise
Returns True if the Blue Dot was rotated clockwise.

col
The column.

interaction
The BlueDotInteraction (page 42) object relating to this rotation.

row
The row.

valid
Returns True if the Blue Dot was rotated.

value
Returns 0 if the Blue Dot wasn’t rotated, -1 if rotated anti-clockwise and 1 if rotated clockwise.

7.6. BlueDotRotation 43

bluedot Documentation, Release 2.0.0

44 Chapter 7. Blue Dot API

CHAPTER 8

Bluetooth Comm API

Blue Dot also contains a useful btcomm API for sending and receiving data over Bluetooth.

For normal use of Blue Dot, this API doesn’t need to be used, but its included in the documentation for info and
for those who might need a simple Bluetooth communication library.

8.1 BluetoothServer

class bluedot.btcomm.BluetoothServer(data_received_callback, auto_start=True,
device=’hci0’, port=1, encoding=’utf-
8’, power_up_device=False,
when_client_connects=None,
when_client_disconnects=None)

Creates a Bluetooth server which will allow connections and accept incoming RFCOMM serial data.

When data is received by the server it is passed to a callback function which must be specified at initiation.

The following example will create a Bluetooth server which will wait for a connection and print any data it
receives and send it back to the client:

from bluedot.btcomm import BluetoothServer
from signal import pause

def data_received(data):
print(data)
s.send(data)

s = BluetoothServer(data_received)
pause()

Parameters

• data_received_callback – A function reference should be passed, this function
will be called when data is received by the server. The function should accept a single
parameter which when called will hold the data received. Set to None if received data
is not required.

• auto_start (bool33) – If True (the default), the Bluetooth server will be auto-
33 https://docs.python.org/3.5/library/functions.html#bool

45

https://docs.python.org/3.5/library/functions.html#bool

bluedot Documentation, Release 2.0.0

matically started on initialisation, if False, the method start will need to be called
before connections will be accepted.

• device (str34) – The Bluetooth device the server should use, the default is “hci0”, if
your device only has 1 Bluetooth adapter this shouldn’t need to be changed.

• port (int35) – The Bluetooth port the server should use, the default is 1.

• encoding (str36) – The encoding standard to be used when sending and receiving
byte data. The default is “utf-8”. If set to None no encoding is done and byte data types
should be used.

• power_up_device (bool37) – If True, the Bluetooth device will be powered up
(if required) when the server starts. The default is False.

Depending on how Bluetooth has been powered down, you may need to use rfkill
to unblock Bluetooth to give permission to bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

• when_client_connects – A function reference which will be called when a client
connects. If None (the default), no notification will be given when a client connects

• when_client_disconnects – A function reference which will be called when a
client disconnects. If None (the default), no notification will be given when a client
disconnects

disconnect_client()
Disconnects the client if connected. Returns True if a client was disconnected.

send(data)
Send data to a connected Bluetooth client

Parameters data (str38) – The data to be sent.

start()
Starts the Bluetooth server if its not already running. The server needs to be started before connections
can be made.

stop()
Stops the Bluetooth server if its running.

adapter
A BluetoothAdapter (page 48) object which represents the Bluetooth device the server is using.

client_address
The MAC address39 of the client connected to the server. Returns None if no client is connected.

client_connected
Returns True if a client is connected.

data_received_callback
Sets or returns the function which is called when data is received by the server.

The function should accept a single parameter which when called will hold the data received. Set to
None if received data is not required.

device
The Bluetooth device the server is using. This defaults to “hci0”.

34 https://docs.python.org/3.5/library/stdtypes.html#str
35 https://docs.python.org/3.5/library/functions.html#int
36 https://docs.python.org/3.5/library/stdtypes.html#str
37 https://docs.python.org/3.5/library/functions.html#bool
38 https://docs.python.org/3.5/library/stdtypes.html#str
39 https://en.wikipedia.org/wiki/MAC_address

46 Chapter 8. Bluetooth Comm API

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#str
https://en.wikipedia.org/wiki/MAC_address

bluedot Documentation, Release 2.0.0

encoding
The encoding standard the server is using. This defaults to “utf-8”.

port
The port the server is using. This defaults to 1.

running
Returns a True if the server is running.

server_address
The MAC address40 of the device the server is using.

when_client_connects
Sets or returns the function which is called when a client connects.

when_client_disconnects
Sets or returns the function which is called when a client disconnects.

8.2 BluetoothClient

class bluedot.btcomm.BluetoothClient(server, data_received_callback, port=1,
device=’hci0’, encoding=’utf-8’,
power_up_device=False, auto_connect=True)

Creates a Bluetooth client which can send data to a server using RFCOMM Serial Data.

The following example will create a Bluetooth client which will connect to a paired device called “raspber-
rypi”, send “helloworld” and print any data is receives:

from bluedot.btcomm import BluetoothClient
from signal import pause

def data_received(data):
print(data)

c = BluetoothClient("raspberrypi", data_received)
c.send("helloworld")

pause()

Parameters

• server (str41) – The server name (“raspberrypi”) or server MAC address
(“11:11:11:11:11:11”) to connect to. The server must be a paired device.

• data_received_callback – A function reference should be passed, this function
will be called when data is received by the client. The function should accept a single
parameter which when called will hold the data received. Set to None if data received
is not required.

• port (int42) – The Bluetooth port the client should use, the default is 1.

• device (str43) – The Bluetooth device to be used, the default is “hci0”, if your device
only has 1 Bluetooth adapter this shouldn’t need to be changed.

• encoding (str44) – The encoding standard to be used when sending and receiving
byte data. The default is “utf-8”. If set to None no encoding is done and byte data types
should be used.

40 https://en.wikipedia.org/wiki/MAC_address
41 https://docs.python.org/3.5/library/stdtypes.html#str
42 https://docs.python.org/3.5/library/functions.html#int
43 https://docs.python.org/3.5/library/stdtypes.html#str
44 https://docs.python.org/3.5/library/stdtypes.html#str

8.2. BluetoothClient 47

https://en.wikipedia.org/wiki/MAC_address
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str

bluedot Documentation, Release 2.0.0

• power_up_device (bool45) – If True, the Bluetooth device will be powered up
(if required) when the server starts. The default is False.

Depending on how Bluetooth has been powered down, you may need to use rfkill
to unblock Bluetooth to give permission to Bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

• auto_connect (bool46) – If True (the default), the Bluetooth client will automati-
cally try to connect to the server at initialisation, if False, the connect() (page 48)
method will need to be called.

connect()
Connect to a Bluetooth server.

disconnect()
Disconnect from a Bluetooth server.

send(data)
Send data to a Bluetooth server.

Parameters data (str47) – The data to be sent.

adapter
A BluetoothAdapter (page 48) object which represents the Bluetooth device the client is using.

client_address
The MAC address of the device being used.

connected
Returns True when connected.

data_received_callback
Sets or returns the function which is called when data is received by the client.

The function should accept a single parameter which when called will hold the data received. Set to
None if data received is not required.

device
The Bluetooth device the client is using. This defaults to “hci0”.

encoding
The encoding standard the client is using. The default is “utf-8”.

port
The port the client is using. This defaults to 1.

server
The server name (“raspberrypi”) or server MAC address48 (“11:11:11:11:11:11”) to connect to.

8.3 BluetoothAdapter

class bluedot.btcomm.BluetoothAdapter(device=’hci0’)
Represents and allows interaction with a Bluetooth Adapter.

The following example will get the Bluetooth adapter, print its powered status and any paired devices:

a = BluetoothAdapter()
print("Powered = {}".format(a.powered))
print(a.paired_devices)

45 https://docs.python.org/3.5/library/functions.html#bool
46 https://docs.python.org/3.5/library/functions.html#bool
47 https://docs.python.org/3.5/library/stdtypes.html#str
48 https://en.wikipedia.org/wiki/MAC_address

48 Chapter 8. Bluetooth Comm API

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#str
https://en.wikipedia.org/wiki/MAC_address

bluedot Documentation, Release 2.0.0

Parameters device (str49) – The Bluetooth device to be used, the default is “hci0”, if your
device only has 1 Bluetooth adapter this shouldn’t need to be changed.

allow_pairing(timeout=60)
Put the adapter into discoverable and pairable mode.

Parameters timeout (int50) – The time in seconds the adapter will remain pairable. If
set to None the device will be discoverable and pairable indefinetly.

address
The MAC address51 of the Bluetooth adapter.

device
The Bluetooth device name. This defaults to “hci0”.

discoverable
Set to True to make the Bluetooth adapter discoverable.

pairable
Set to True to make the Bluetooth adapter pairable.

paired_devices
Returns a sequence of devices paired with this adapater [(mac_address, name),
(mac_address, name), ...]:

a = BluetoothAdapter()
devices = a.paired_devices
for d in devices:

device_address = d[0]
device_name = d[1]

powered
Set to True to power on the Bluetooth adapter.

Depending on how Bluetooth has been powered down, you may need to use rfkill to unblock
Bluetooth to give permission to bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

49 https://docs.python.org/3.5/library/stdtypes.html#str
50 https://docs.python.org/3.5/library/functions.html#int
51 https://en.wikipedia.org/wiki/MAC_address

8.3. BluetoothAdapter 49

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://en.wikipedia.org/wiki/MAC_address

bluedot Documentation, Release 2.0.0

50 Chapter 8. Bluetooth Comm API

CHAPTER 9

Mock API

Blue Dot also contains a useful mock API for simulating Blue Dot and bluetooth comms. This is useful for testing
and allows for prototyping without having to use a Blue Dot client.

9.1 MockBlueDot

class bluedot.mock.MockBlueDot(device=’hci0’, port=1, auto_start_server=True,
power_up_device=False, print_messages=True, cols=1,
rows=1)

MockBlueDot (page 51) inherits from BlueDot but overrides _create_server(), to create a
MockBluetoothServer (page 52) which can be used for testing and debugging.

launch_mock_app()
Launches a mock Blue Dot app.

The mock app reacts to mouse clicks and movement and calls the mock blue dot methods to simulates
presses.

This is useful for testing, allowing you to interact with Blue Dot without having to script mock func-
tions.

The mock app uses pygame which will need to be installed.

mock_blue_dot_moved(col, row, x, y)
Simulates the Blue Dot being moved.

Parameters

• col (int52) – The column position of the button

• row (int53) – The row position of the button

• x (int54) – The x position where the button was moved too

• y (int55) – The y position where the button was moved too

mock_blue_dot_pressed(col, row, x, y)
Simulates the Blue Dot being pressed.

52 https://docs.python.org/3.5/library/functions.html#int
53 https://docs.python.org/3.5/library/functions.html#int
54 https://docs.python.org/3.5/library/functions.html#int
55 https://docs.python.org/3.5/library/functions.html#int

51

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

bluedot Documentation, Release 2.0.0

Parameters

• col (int56) – The column position of the button

• row (int57) – The row position of the button

• x (int58) – The x position where the button was pressed

• y (int59) – The y position where the button was pressed

mock_blue_dot_released(col, row, x, y)
Simulates the Blue Dot being released.

Parameters

• col (int60) – The column position of the button

• row (int61) – The row position of the button

• x (int62) – The x position where the button was released

• y (int63) – The y position where the button was released

mock_client_connected()
Simulates a client connecting to the Blue Dot.

Parameters client_address (string) – The mock client mac address, defaults to
‘11:11:11:11:11:11’

mock_client_disconnected()
Simulates a client disconnecting from the Blue Dot.

9.2 MockBluetoothServer

class bluedot.mock.MockBluetoothServer(data_received_callback, auto_start=True,
device=’mock0’, port=1, encoding=’utf-
8’, power_up_device=False,
when_client_connects=None,
when_client_disconnects=None)

MockBluetoothServer (page 52) inherits from BluetoothServer (page 45) but over-
rides __init__, start() (page 52) , stop() (page 52) and send_raw() to create a
MockBluetoothServer (page 52) which can be used for testing and debugging.

mock_client_connected(mock_client=None)
Simulates a client connected to the BluetoothServer (page 45).

Parameters mock_client (MockBluetoothClient (page 53)) – The mock client to
interact with, defaults to None. If None, client address is set to ‘99:99:99:99:99:99’

mock_client_disconnected()
Simulates a client disconnecting from the BluetoothServer (page 45).

mock_client_sending_data(data)
Simulates a client sending data to the BluetoothServer (page 45).

start()
Starts the Bluetooth server if its not already running. The server needs to be started before connections
can be made.

56 https://docs.python.org/3.5/library/functions.html#int
57 https://docs.python.org/3.5/library/functions.html#int
58 https://docs.python.org/3.5/library/functions.html#int
59 https://docs.python.org/3.5/library/functions.html#int
60 https://docs.python.org/3.5/library/functions.html#int
61 https://docs.python.org/3.5/library/functions.html#int
62 https://docs.python.org/3.5/library/functions.html#int
63 https://docs.python.org/3.5/library/functions.html#int

52 Chapter 9. Mock API

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

bluedot Documentation, Release 2.0.0

stop()
Stops the Bluetooth server if its running.

9.3 MockBluetoothClient

class bluedot.mock.MockBluetoothClient(server, data_received_callback, port=1,
device=’mock1’, encoding=’utf-8’,
power_up_device=False, auto_connect=True)

MockBluetoothClient (page 53) inherits from BluetoothClient (page 47) but overrides
__init__, connect() (page 53) and send_raw() to create a MockBluetoothServer (page 52)
which can be used for testing and debugging.

Note - the server parameter should be an instance of MockBluetoothServer (page 52).

connect()
Connect to a Bluetooth server.

disconnect()
Disconnect from a Bluetooth server.

mock_server_sending_data(data)
Simulates a server sending data to the BluetoothClient (page 47).

9.3. MockBluetoothClient 53

bluedot Documentation, Release 2.0.0

54 Chapter 9. Mock API

CHAPTER 10

Protocol

Blue Dot uses a client/server model. The BlueDot class starts a Bluetooth server, the Blue Dot application
connects as a client.

The detail below can be used to create new applications (clients); if you do please send a pull request :)

10.1 Bluetooth

Communication over Bluetooth is made using a RFCOMM serial port profile using UUID “00001101-0000-1000-
8000-00805f9b34fb”.

10.2 Specification

The transmission of data from client to server or server to client is a simple stream no acknowledgements or data
is sent in response to commands.

All messages between conform to the same format:

[operation],[params],[*]\n

Messages are sent as utf-8 encoded strings.

\n represents the new-line character.

The following operations are used to communicate between client and server.

55

bluedot Documentation, Release 2.0.0

Operations Message format Direction
Button released 0,[col],[row],[x],[y]\n Client >

Server
Button pressed 1,[col],[row],[x],[y]\n Client >

Server
Button moved 2,[col],[row],[x],[y]\n Client >

Server
Protocol check 3,[protocol version],[client name]\n Client >

Server
Set config 4,[color],[square],[border],[visible],[cols],

[rows]\n
Server >
Client

Set button con-
fig

5,[color],[square],[border],[visible],[col],
[row]\n

Server >
Client

Messages are constructed using the following parameters.

Parameter Description
cols The number of columns in the matrix of buttons
rows The number of rows in the matrix of buttons
col The column position of the button (0 is top)
row The row position of the button (0 is left)
x Horizontal position between -1 and +1, with 0 being the centre and +1 being the right radius

of the button.
y Vertical position between -1 and +1, with 0 being the centre and +1 being the top radius of

the button.
protocol ver-
sion

The version of protocol the client supports.

client name The name of the client e.g. “Android Blue Dot App”
color A hex value in the format #rrggbbaa representing red, green, blue, alpha values.
square 0 or 1, 1 if the dot should be a square.
border 0 or 1, 1 if the dot should have a border.
visible 0 or 1, 1 if the dot should be visible.

Messages are sent when:

1. A client connects

2. When the setup (or appearance) of a button changes

3. A button is released, pressed or moved

56 Chapter 10. Protocol

bluedot Documentation, Release 2.0.0

10.3 Example

When the Android client connects using protocol version 2:

3,2,Android Blue Dot app\n

The setup of the Blue Dot is sent to the client:

4,#0000ffff,0,0,1,1,2\n

If any buttons are different to the default, the configuration is sent:

5,#00ff0000,0,0,1,0,1\n

If the “first” button at position [0,0] is pressed at the top, the following message will be sent:

1,0,0,0.0,1.0\n

While the button is pressed (held down), the user moves their finger to the far right causing the following message
to be sent:

2,0,0,1.0,0.0\n

The button is then released, resulting in the following message:

0,0,0,1.0,0.0\n

The color of the button is changed to “red” the server sends to the client:

10.3. Example 57

bluedot Documentation, Release 2.0.0

5,#ff0000ff,0,0,1,0,0\n

10.4 Versions

• 0 - initial version

• 1 - introduction of operation 3, 4

• 2 - Blue Dot version 2, introduction of col, row for multiple buttons and operation 5

58 Chapter 10. Protocol

CHAPTER 11

Build

These are instructions for how to develop, build and deploy Blue Dot.

11.1 Develop

Install / upgrade tools:

sudo python3 -m pip install --upgrade pip setuptools wheel twine virtualenv

Create a virtual environment (recommended):

virtualenv --system-site-packages bluedot-dev
cd bluedot-dev
source bin/activate

Clone repo and install for dev:

git clone https://github.com/martinohanlon/BlueDot
cd BlueDot
git checkout dev
python3 setup.py develop

11.2 Test

Install pytest64:

pip3 install -U pytest

Run tests:

cd BlueDot/tests
pytest -v

64 https://doc.pytest.org/

59

https://doc.pytest.org/

bluedot Documentation, Release 2.0.0

11.3 Deploy

Build for deployment:

python3 setup.py sdist
python3 setup.py bdist_wheel

Deploy to PyPI65:

twine upload dist/* --skip-existing

65 https://pypi.python.org/pypi

60 Chapter 11. Build

https://pypi.python.org/pypi

CHAPTER 12

Change log

12.1 Bluedot Python library

12.1.1 2.0.0 - 2020-11-01

• implementation of multiple buttons in a matrix

• refactor of significant portions of the code base

• improvement to btcomm to manage large messages

• update to MockBlueDot

• deprecated BlueDot.interaction

• added warnings when invalid data is received

• support for protocol version 2

• removed support for Python 2, 3.3 & 3.4

12.1.2 1.3.2 - 2019-04-22

• change to how callbacks are called

• added set_when_pressed, set_when_released, etc to allow callbacks to be called in their own threads.

12.1.3 1.3.1 - 2019-01-01

• minor bug fix to launch_mock_app

12.1.4 1.3.0 - 2018-12-30

• added ability to change the color, border, shape and visibility of the dot (color (page 37), border
(page 37), square (page 38), visible (page 38))

• added protocol version checking

• minor threading changes in btcomm

61

bluedot Documentation, Release 2.0.0

• updates to the Blue Dot Python app

• rewrite of the mock app

• support for protocol version 1

12.1.5 1.2.3 - 2018-02-22

• fix to wait_for_press and wait_for_release

• when_client_connects and when_client_disconnects callbacks are now threaded

• The python blue dot app can now be started with the command bluedotapp

• new tests for wait_for_(events)

12.1.6 1.2.2 - 2017-12-30

• bluetooth comms tests and minor bug fix in BluetoothClient (page 47)

12.1.7 1.2.1 - 2017-12-18

• massive code and docs tidy up by Dave Jones66

12.1.8 1.2.0 - 2017-12-10

• added when_rotated

• threaded swipe callbacks

• exposed new BlueDot (page 35) properties (adapter (page 37), running (page 38),
paired_devices (page 38))

• fixed active bug in interaction

• automated tests

12.1.9 1.1.0 - 2017-11-05

• threaded callbacks

• python app rounded x,y performance improvements

12.1.10 1.0.4 - 2017-09-10

• serial port profile port fix

• launching multiple blue dots fix

12.1.11 1.0.3 - 2017-07-28

• python 2 bug fix

66 https://github.com/waveform80

62 Chapter 12. Change log

https://github.com/waveform80

bluedot Documentation, Release 2.0.0

12.1.12 1.0.2 - 2017-07-23

• bug fix

12.1.13 1.0.1 - 2017-06-19

• bug fixes

12.1.14 1.0.0 - 2017-06-04

• production release!

• added double click

• doc updates

• minor changes

12.1.15 0.4.0 - 2017-05-05

• added swipes and interactions

• doc updates

• bug fix in BlueDot.when_moved

12.1.16 0.3.0 - 2017-05-01

• Python Blue Dot app

• minor bug fix in BluetoothClient (page 47)

12.1.17 0.2.1 - 2017-04-23

• bug fix in MockBlueDot

• doc fixes

12.1.18 0.2.0 - 2017-04-23

• added when_client_connects (page 39), when_client_disconnects (page 39)

• added allow_pairing() (page 36) functions

• refactored Bluetooth comms

• added BluetoothAdapter (page 48)

12.1.19 0.1.2 - 2017-04-14

• mock blue dot improvements

• doc fixes

12.1.20 0.1.1 - 2017-04-08

• clamped distance in BlueDotPosition (page 41)

12.1. Bluedot Python library 63

bluedot Documentation, Release 2.0.0

12.1.21 0.1.0 - 2017-04-07

• Check Bluetooth adapter is powered

• Handle client connection timeouts

• Docs & image updates

12.1.22 0.0.6 - 2017-04-05

• Added MockBlueDot for testing and debugging

• more docs

12.1.23 0.0.4 - 2017-03-31

Updates after alpha feedback

• Python 2 compatibility

• .dot_position to .position

• .values added

• clamped x, y to 1

• loads of doc updates

12.1.24 0.0.2 - 2017-03-29

Alpha - initial testing

12.2 Android app

12.2.1 7 (2.0) - tbc

• implementation of multiple buttons in a matrix

• support for protocol version 2

12.2.2 6 (1.3.1) - 2019-12-30

• Minor bug fix

12.2.3 5 (1.3) - 2019-12-29

• Added settings menu so a specific bluetooth port can be selected

• Using specific bluetooth ports, multiple apps can now connect to a single BT devices

• Minor bugs fixes

64 Chapter 12. Change log

bluedot Documentation, Release 2.0.0

12.2.4 4 (1.2) - 2018-12-30

• Rewrite of the Button view

• Rewrite of the Bluetooth comms layer

• Support for colours, square and border

• Landscape (and portrait) views

• added protocol version checking

• support for protocol version 1

12.2.5 3 (1.1.1) - 2018-09-21

• Android SDK version uplift (due to google play store minimum requirements change)

12.2.6 2 (1.1) - 2017-11-05

• better responsive layout

• fixed issues with small screen devices

• rounded x,y values increasing performance

• new help icon

• link to https://bluedot.readthedocs.io not http

12.2.7 1 (0.0.2) - 2017-04-05

• icon transparency

• connection monitor

• added info icon to https://bluedot.readthedocs.io

12.2.8 0 (0.0.1) - 2017-03-29

• alpha - initial testing

12.2. Android app 65

https://bluedot.readthedocs.io
https://bluedot.readthedocs.io

bluedot Documentation, Release 2.0.0

66 Chapter 12. Change log

Python Module Index

b
bluedot, 35
bluedot.btcomm, 45
bluedot.mock, 51

67

bluedot Documentation, Release 2.0.0

68 Python Module Index

Index

A
active (bluedot.BlueDotInteraction attribute), 42
adapter (bluedot.BlueDot attribute), 37
adapter (bluedot.btcomm.BluetoothClient attribute),

48
adapter (bluedot.btcomm.BluetoothServer attribute),

46
address (bluedot.btcomm.BluetoothAdapter at-

tribute), 49
allow_pairing() (bluedot.BlueDot method), 36
allow_pairing() (blue-

dot.btcomm.BluetoothAdapter method),
49

angle (bluedot.BlueDotPosition attribute), 41
angle (bluedot.BlueDotSwipe attribute), 42
anti_clockwise (bluedot.BlueDotRotation at-

tribute), 43

B
BlueDot (class in bluedot), 35
bluedot (module), 35
bluedot.btcomm (module), 45
bluedot.mock (module), 51
BlueDotButton (class in bluedot), 39
BlueDotInteraction (class in bluedot), 42
BlueDotPosition (class in bluedot), 41
BlueDotRotation (class in bluedot), 43
BlueDotSwipe (class in bluedot), 42
BluetoothAdapter (class in bluedot.btcomm), 48
BluetoothClient (class in bluedot.btcomm), 47
BluetoothServer (class in bluedot.btcomm), 45
border (bluedot.BlueDot attribute), 37
border (bluedot.BlueDotButton attribute), 40
bottom (bluedot.BlueDotPosition attribute), 41
buttons (bluedot.BlueDot attribute), 37

C
client_address (bluedot.btcomm.BluetoothClient

attribute), 48
client_address (bluedot.btcomm.BluetoothServer

attribute), 46
client_connected (blue-

dot.btcomm.BluetoothServer attribute),
46

clockwise (bluedot.BlueDotRotation attribute), 43
col (bluedot.BlueDotPosition attribute), 41
col (bluedot.BlueDotRotation attribute), 43
col (bluedot.BlueDotSwipe attribute), 43
color (bluedot.BlueDot attribute), 37
color (bluedot.BlueDotButton attribute), 40
cols (bluedot.BlueDot attribute), 37
connect() (bluedot.btcomm.BluetoothClient

method), 48
connect() (bluedot.mock.MockBluetoothClient

method), 53
connected (bluedot.btcomm.BluetoothClient at-

tribute), 48
current_position (bluedot.BlueDotInteraction

attribute), 42

D
data_received_callback (blue-

dot.btcomm.BluetoothClient attribute),
48

data_received_callback (blue-
dot.btcomm.BluetoothServer attribute),
46

device (bluedot.BlueDot attribute), 37
device (bluedot.btcomm.BluetoothAdapter attribute),

49
device (bluedot.btcomm.BluetoothClient attribute),

48
device (bluedot.btcomm.BluetoothServer attribute),

46
direction (bluedot.BlueDotSwipe attribute), 43
disconnect() (bluedot.btcomm.BluetoothClient

method), 48
disconnect() (bluedot.mock.MockBluetoothClient

method), 53
disconnect_client() (blue-

dot.btcomm.BluetoothServer method),
46

discoverable (bluedot.btcomm.BluetoothAdapter
attribute), 49

distance (bluedot.BlueDotInteraction attribute), 42
distance (bluedot.BlueDotPosition attribute), 41
distance (bluedot.BlueDotSwipe attribute), 43

69

bluedot Documentation, Release 2.0.0

double_press_time (bluedot.BlueDot attribute),
37

down (bluedot.BlueDotSwipe attribute), 43
duration (bluedot.BlueDotInteraction attribute), 42

E
encoding (bluedot.btcomm.BluetoothClient at-

tribute), 48
encoding (bluedot.btcomm.BluetoothServer at-

tribute), 46

G
get_rotation() (bluedot.BlueDotButton method),

39
get_swipe() (bluedot.BlueDotButton method), 40

I
interaction (bluedot.BlueDot attribute), 37
interaction (bluedot.BlueDotButton attribute), 40
interaction (bluedot.BlueDotRotation attribute),

43
interaction (bluedot.BlueDotSwipe attribute), 43
is_connected (bluedot.BlueDot attribute), 38
is_double_press() (bluedot.BlueDotButton

method), 40
is_pressed (bluedot.BlueDot attribute), 38

L
launch_mock_app() (bluedot.mock.MockBlueDot

method), 51
left (bluedot.BlueDotPosition attribute), 41
left (bluedot.BlueDotSwipe attribute), 43

M
middle (bluedot.BlueDotPosition attribute), 41
mock_blue_dot_moved() (blue-

dot.mock.MockBlueDot method), 51
mock_blue_dot_pressed() (blue-

dot.mock.MockBlueDot method), 51
mock_blue_dot_released() (blue-

dot.mock.MockBlueDot method), 52
mock_client_connected() (blue-

dot.mock.MockBlueDot method), 52
mock_client_connected() (blue-

dot.mock.MockBluetoothServer method),
52

mock_client_disconnected() (blue-
dot.mock.MockBlueDot method), 52

mock_client_disconnected() (blue-
dot.mock.MockBluetoothServer method),
52

mock_client_sending_data() (blue-
dot.mock.MockBluetoothServer method),
52

mock_server_sending_data() (blue-
dot.mock.MockBluetoothClient method),
53

MockBlueDot (class in bluedot.mock), 51

MockBluetoothClient (class in bluedot.mock),
53

MockBluetoothServer (class in bluedot.mock),
52

modified (bluedot.BlueDotButton attribute), 40
move() (bluedot.BlueDotButton method), 40
moved() (bluedot.BlueDotInteraction method), 42

P
pairable (bluedot.btcomm.BluetoothAdapter at-

tribute), 49
paired_devices (bluedot.BlueDot attribute), 38
paired_devices (blue-

dot.btcomm.BluetoothAdapter attribute),
49

port (bluedot.BlueDot attribute), 38
port (bluedot.btcomm.BluetoothClient attribute), 48
port (bluedot.btcomm.BluetoothServer attribute), 47
positions (bluedot.BlueDotInteraction attribute),

42
powered (bluedot.btcomm.BluetoothAdapter at-

tribute), 49
press() (bluedot.BlueDotButton method), 40
pressed_position (bluedot.BlueDotInteraction

attribute), 42
previous_position (bluedot.BlueDotInteraction

attribute), 42
print_messages (bluedot.BlueDot attribute), 38

R
release() (bluedot.BlueDotButton method), 40
released() (bluedot.BlueDotInteraction method),

42
released_position (bluedot.BlueDotInteraction

attribute), 42
resize() (bluedot.BlueDot method), 36
right (bluedot.BlueDotPosition attribute), 41
right (bluedot.BlueDotSwipe attribute), 43
rotation_segments (bluedot.BlueDot attribute),

38
row (bluedot.BlueDotPosition attribute), 41
row (bluedot.BlueDotRotation attribute), 43
row (bluedot.BlueDotSwipe attribute), 43
rows (bluedot.BlueDot attribute), 38
running (bluedot.BlueDot attribute), 38
running (bluedot.btcomm.BluetoothServer attribute),

47

S
send() (bluedot.btcomm.BluetoothClient method), 48
send() (bluedot.btcomm.BluetoothServer method),

46
server (bluedot.BlueDot attribute), 38
server (bluedot.btcomm.BluetoothClient attribute),

48
server_address (bluedot.btcomm.BluetoothServer

attribute), 47

70 Index

bluedot Documentation, Release 2.0.0

set_when_client_connects() (blue-
dot.BlueDot method), 36

set_when_client_disconnects() (blue-
dot.BlueDot method), 36

speed (bluedot.BlueDotSwipe attribute), 43
square (bluedot.BlueDot attribute), 38
square (bluedot.BlueDotButton attribute), 40
start() (bluedot.BlueDot method), 37
start() (bluedot.btcomm.BluetoothServer method),

46
start() (bluedot.mock.MockBluetoothServer

method), 52
stop() (bluedot.BlueDot method), 37
stop() (bluedot.btcomm.BluetoothServer method),

46
stop() (bluedot.mock.MockBluetoothServer

method), 52

T
time (bluedot.BlueDotPosition attribute), 41
top (bluedot.BlueDotPosition attribute), 41

U
up (bluedot.BlueDotSwipe attribute), 43

V
valid (bluedot.BlueDotRotation attribute), 43
valid (bluedot.BlueDotSwipe attribute), 43
value (bluedot.BlueDotRotation attribute), 43
visible (bluedot.BlueDot attribute), 38
visible (bluedot.BlueDotButton attribute), 40

W
wait_for_connection() (bluedot.BlueDot

method), 37
when_client_connects (bluedot.BlueDot at-

tribute), 39
when_client_connects (blue-

dot.btcomm.BluetoothServer attribute),
47

when_client_disconnects (bluedot.BlueDot
attribute), 39

when_client_disconnects (blue-
dot.btcomm.BluetoothServer attribute),
47

X
x (bluedot.BlueDotPosition attribute), 41

Y
y (bluedot.BlueDotPosition attribute), 41

Index 71

	Getting Started
	Installation
	Pairing
	Code
	Connecting
	Where next

	Pair a Raspberry Pi and Android phone
	Using the Desktop
	Using the Command Line

	Pair 2 Raspberry Pis
	Using the Desktop
	Using the Command Line

	Recipes
	Button
	Joystick
	Appearance
	Layout
	Slider
	Swiping
	Rotating
	Multiple Blue Dot Apps
	Bluetooth
	Testing

	Blue Dot Android App
	Start

	Blue Dot Python App
	Start
	Options

	Blue Dot API
	BlueDot
	BlueDotButton
	BlueDotPosition
	BlueDotInteraction
	BlueDotSwipe
	BlueDotRotation

	Bluetooth Comm API
	BluetoothServer
	BluetoothClient
	BluetoothAdapter

	Mock API
	MockBlueDot
	MockBluetoothServer
	MockBluetoothClient

	Protocol
	Bluetooth
	Specification
	Example
	Versions

	Build
	Develop
	Test
	Deploy

	Change log
	Bluedot Python library
	Android app

	Python Module Index
	Index

